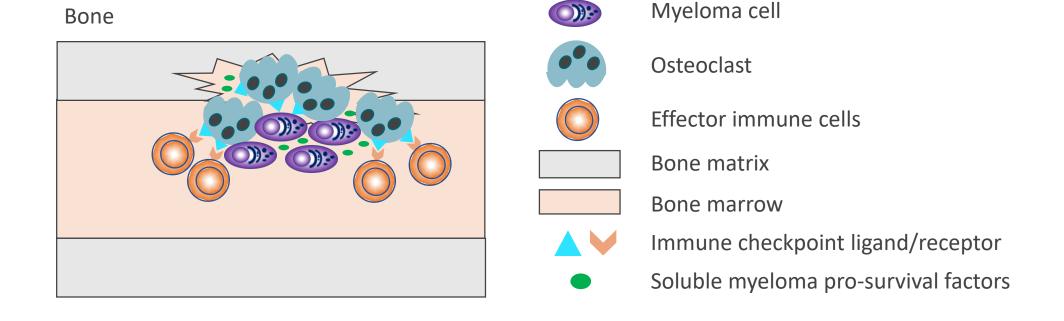
#### Anti-Myeloma Drug Melflufen Inhibits RANKL-stimulated Osteoclastogenesis by Suppressing Proliferation of CD14+ Precursor Cells

Konstantin Byrgazov<sup>1</sup>; Annica Rasmusson<sup>2</sup>; Claes Andersson<sup>2</sup>; Malin Berglund<sup>2</sup>; Lena Lenhammar<sup>2</sup>; Hakan Melhus<sup>2</sup>; Joachim Gullbo<sup>2</sup>; Ana Slipicevic<sup>1</sup>; Fredrik Lehmann<sup>1</sup>; Rolf Larsson<sup>2</sup>; Thomas Lind<sup>2</sup>; Marten Fryknas<sup>2</sup>

<sup>&</sup>lt;sup>1</sup>Oncopeptides AB, Stockholm, Sweden;

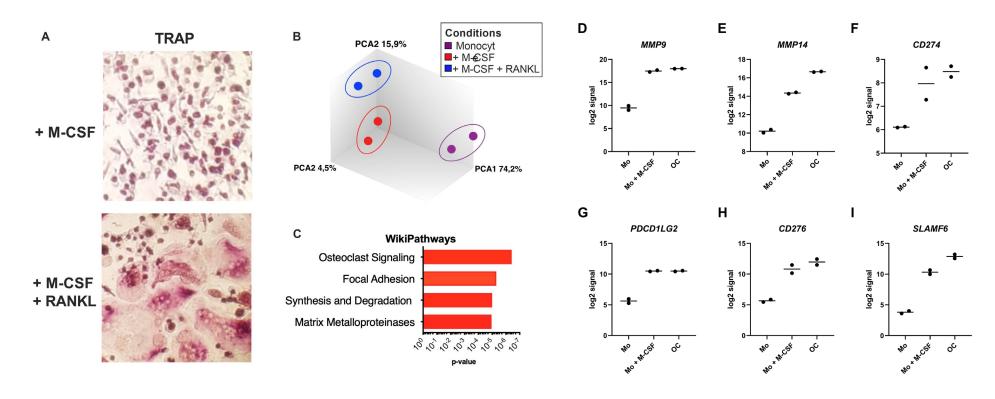
<sup>&</sup>lt;sup>2</sup>Department of Medical Sciences, Uppsala University, Uppsala, Sweden


### **Disclosures**

- Konstantin Byrgazov (Oncopeptides AB, employment)
- Ana Slipicevic (Oncopeptides AB, employment)
- Fredrik Lehmann (Oncopeptides AB, employment, equity)
- Joachim Gullbo (Oncopeptides AB, founder, equity, consultancy; Theradex Oncology, employment)
- Rolf Larsson (Oncopeptides AB, equity)
- Mårten Fryknäs (Oncopeptides AB, research grant)

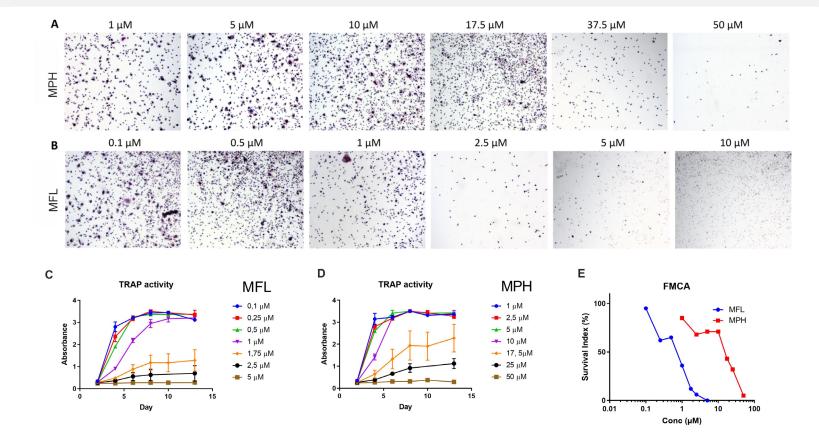
Byrgazov et al ASH 2020 #1360 2

# Myeloma bone disease and osteoclasts


- Myeloma bone disease (MBD): pathological fractures, bone destruction, bone pain (Terpos et al., Blood Cancer 2018)
- Local excessive osteoclastogenesis promoted by myeloma cells (Marino and Roodman, 2018)
- Osteoclastogenesis: differentiation of CD14+ monocytes into osteoclasts (OC) stimulated by RANKL and M-CSF
- Patients receiving anti-myeloma drug melflufen (MFL) are reported to have increase physical activity and reduce pain in HORIZON trial (Oriol et al., Poster 3477)



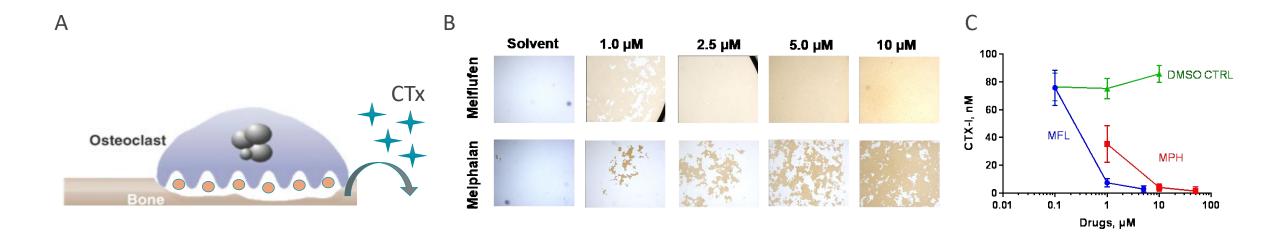
Byrgazov et al ASH 2020 #1360


# In vitro Osteoclastogenesis

- (A) CD14+ monocytes show OC morphology and tartrate-resistant acid phosphotase (TRAP) staining upon incubation with M-CSF and RANKL.
- (B) Principal component analysis of gene expression of monocytes alone or incubated with M-CSF and M-CSF + RANKL
- (C) Pathways enriched in gnee expression of monocytes incubated with M-CSF and RANKL
- (D-I) Expression of selected genes encoding immune suppressive molecules MMP9, MMP14, CD274/PD-L1, PCD1LG2/PD-L2, CD276/B7-H3



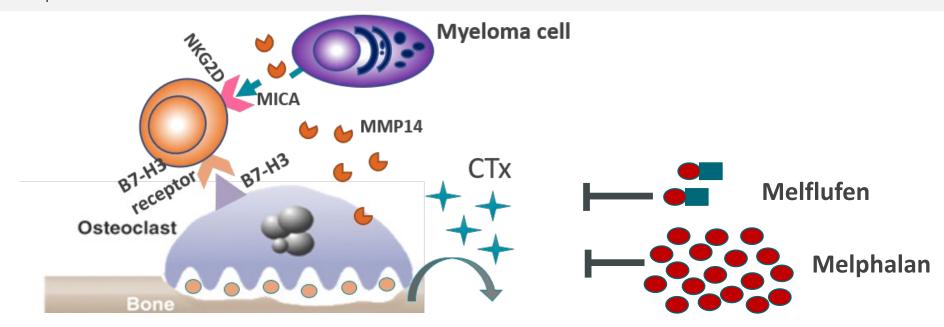
### Effect of melflufen and melphalan on in vitro osteoclastogenesis


- (A-B) Effects of melphalan (MPH) and melflufen (MFL) on in vitro osteoclastogenesis shown by TRAP activity staining
- (C-D) Kinetics of osteoclastogenesis in the presence of increasing concentrations of MFL and MPH showing 10-fold higher activity of MFL
- (E) Cytotoxicity of MFL and MPH in CD14+ monocytic precursor cells



Byrgazov et al ASH 2020 #1360

## Effect of melflufen and melphalan on in vitro osteoclastogenesis


- (A) Schematic representation of an osteoclasts bone resorbing activity: collagen fragment (CTx) release and inorganic matrix (brown) degradation
- (B) Melflufen and melphalan effects on osteoclast-mediated inorganic matrix degrdation: white 100% degradation, brown no degradation
- (C) Drug concentration-dependent effects of melflufen (MFL) and melphalan (MPH) on collagen fragment release



Byrgazov et al ASH 2020 #1360 6

#### **Conclusions**

- Osteoclastogenesis is associated with increased bone resorption and immunosuppressive microenvironment.
- Osteoclastogenesis up-regulates expression of genes encoding immunosuppressive molecules PD-L1, PD-L2, B7-H3, and MMP14 which negatively regulate T and NK cell reponses: PD-L1 and PD-L2 are responsible for T cell exhaustion (Boussiotis, NEJM 2017), B7-H3 negatively regulates CD8+ T and NK cells (Lee et al., Cell Res 2017), MMP14 promotes shedding of MICA thus attenuating NK cell response (Liu et al., J Immunol 2010).
- Melflufen **inhibits** osteoclastogenesis and bone resorption (both inorganic matrix and collagen release) at physiologically achievable concentrations and **10-fold** more efficient than melphalan.



Byrgazov et al ASH 2020 #1360 7